白話文講解支持向量機(一) 線性SVM
大學畢業後7月正式入伍登入了國軍online。在軍中由於有太多的時間可以發呆思考人生,所以想說利用這些時間把一些機器學習的模型在頭腦裡跑過一遍。SVM在機器學習領域裡算是一個滿經典的演算法,因此值得趁記憶猶新時花些篇幅記錄一下,希望可以以我自己比較白話的理解方式介紹SVM。
我將以下面的順序講解SVM,先讓大家有個大致的概念:
- 非線性SVM(下一篇)
- 特性
- 實際上的運作方式
- 預測新資料
- Kernel
- Kernel Trick
- 目標函數
本篇會先從線性SVM開始講起,如何使用一條直線、一個平面或是在更高維度的任何線性函數來達成二元分類。除了線性的SVM以外,也有非線性SVM。不過我覺得線性SVM跟非線性SVM還是要明確分開來講比較好,不然像我在自學的時候就把這這兩個混在一起看,導致在kernel的觀念那邊卡關很久。
因此下一篇我們才會進入非線性SVM,假設資料不是單純可以線性分割時,SVM可以怎麼變化達成非線性的切割,進而帶到非線性SVM使用的kernel概念、以及實際上電腦在訓練時都會採用kernel trick優化減少運算量。
近期迴響